成年男人裸j网站 I 精品日产卡一卡二卡三入口 I 欧美黑人粗大xxxxx猛交 I 国产视频在线免费观看 I 日本特黄成人 I 免费无码av污污污在线观看 I 美国一区二区三区无码视频 I 亚洲欧美日韩一区二区三区四区 I 国产jjizz女人多水 I 日韩久久影视 I 91亚洲国产成人精品一区二三 I 老司机久久精品 I 屁屁国产第一页草草影院 I 我我色综合 I 成人免费大片黄在线播放 I 欧美三级在线电影免费 I 国产伊人网 I 精品久久久久99 I 末发育娇小性色xxxxx I 荔枝污 I 国产寡妇亲子伦一区二区三区四区 I 国产三级黄色片 I 秋霞久久久久久一区二区 I 95精品视频 I 超碰碰碰 I 特级黄色一级大片 I 视频在线日韩 I 亚洲成年人网

歡迎來到北京博奧森生物技術(shù)有限公司網(wǎng)站!
咨詢熱線

18611424007

當(dāng)前位置:首頁(yè)  >  新聞資訊  >  【12月文獻(xiàn)戰(zhàn)報(bào)】Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

【12月文獻(xiàn)戰(zhàn)報(bào)】Bioss抗體新增高分文獻(xiàn)精彩呈現(xiàn)

更新時(shí)間:2023-01-12  |  點(diǎn)擊率:1299

 


截至目前,引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)共23200篇總影響因子106190.49分,發(fā)表在Nature, Science, Cell以及Immunity等頂級(jí)期刊的文獻(xiàn)共54篇,合作單位覆蓋了清華、北大、復(fù)旦、華盛頓大學(xué)、麻省理工學(xué)院、東京大學(xué)以及紐約大學(xué)等國(guó)際研究機(jī)構(gòu)上百所。

我們每月收集引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)。若您在當(dāng)月已發(fā)表SCI文章,但未被我公司收集,請(qǐng)致電Bioss,我們將贈(zèng)予現(xiàn)金鼓勵(lì),金額標(biāo)準(zhǔn)請(qǐng)參考“發(fā)文章 領(lǐng)獎(jiǎng)金”活動(dòng)頁(yè)面。

近期收錄2022年12月引用Bioss產(chǎn)品發(fā)表的文獻(xiàn)共273篇(圖一,綠色柱),文章影響因子(IF) 總和高達(dá)1724.643,其中,10分以上文獻(xiàn)29篇(圖二)。

圖一

 

圖二



 

本文主要分享引用Bioss產(chǎn)品發(fā)表文章至Nature NanotechnologyImmunityCancer Cell等期刊的6篇 IF>15 的文獻(xiàn)摘要讓我們一起欣賞吧。

 


 

IMMUNITY [IF=43.474]



文獻(xiàn)引用抗體:bs-6197R

Anti-TIM4 pAb

作者單位:美國(guó)德克薩斯大學(xué)西南醫(yī)學(xué)中心免疫學(xué)系

摘要:Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)—an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1β in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.

 

ADVANCED MATERIALS

 [IF=32.086]


文獻(xiàn)引用抗體:bs-0162R

Anti-iNOS pAb
作者單位:香港大學(xué)李嘉誠(chéng)醫(yī)學(xué)院骨科及創(chuàng)傷科

摘要:Conferring catalytic defects in sonosensitizers is of paramount importance in reinforcing sonodynamic therapy. However, the formation of such 0D defects is governed by the Schottky defect principle. Herein, 2D catalytic planar defects are designed within Ti3C2 sheets to address this challenge. These specific planar slip dislocations with abundant Ti3+ species (Ti3C2-SD(Ti3+)) can yield surface-bound O due to the effective activation of O2, thus resulting in a substantial amount of1O2 generation and the 99.72% ± 0.03% bactericidal capability subject to ultrasound (US) stimulation. It is discovered that the 2D catalytic planar defects can intervene in electron transfer through the phonon drag effect—a coupling effect between surface electrons and US-triggered phonons—that simultaneously contributes to a dramatic decrease in O2 activation energy from 1.65 to 0.06 eV. This design has achieved a qualitative leap in which the US catalytic site has transformed from 0D to 2D. Moreover, it is revealed that the electron origin, electron transfer, and visible O2 activation pathway triggered by US can be attributed to the phonon–electron coupling effect. After coating with neutrophil membrane (NM) proteins, the NM-Ti3C2-SD(Ti3+) sheets further demonstrate a 6-log10 reduction in methicillin-resistant Staphylococcus aureus burden in the infected bony tissue.

 

 

 


 

ADVANCED MATERIALS

 [IF=32.086]


文獻(xiàn)引用抗體:

bs-0812RAnti-IL-1 Beta pAb

bsm-33207MAnti-TNF alpha mAb
作者單位:溫州醫(yī)科大學(xué)眼科醫(yī)院眼科視光學(xué)院

摘要:Photodynamic therapy (PDT) is commonly used in choroidal neovascularization (CNV) treatment due to the superior light transmittance of the eye. However, PDT often leads to surrounding tissue damage and further microenvironmental deterioration, including exacerbated hypoxia, inflammation, and secondary neovascularization. Herein, Pt nanoparticles (NPs) and Au NPs decorated zeolitic imidazolate framework-8 (ZIF-8) nanoplatform is developed to load indocyanine green (ICG) for precise PDT and microenvironment amelioration, which can penetrate the internal limiting membrane through Müller cells endocytosis and target to CNV by surface grafted cyclo(Arg-Gly-Asp-d-Phe-Lys) after intravitreal injection. The excessive H2O2 in the CNV microenvironment is catalyzed by catalase-like Pt NPs for hypoxia relief and enhanced PDT occlusion of neovascular. Meanwhile, Au NPs show significant anti-inflammatory and anti-angiogenesis properties in regulating macrophages and blocking vascular endothelial growth factor (VEGF). Compared with verteporfin treatment, the mRNA expressions of hypoxia-inducible factor-1α and VEGF in the nanoplatform group are downregulated by 90.2% and 81.7%, respectively. Therefore, the nanoplatform realizes a comprehensive CNV treatment effect based on the high drug loading capacity and biosafety. The CNV treatment mode developed in this work provides a valuable reference for treating other diseases with similar physiological barriers that limit drug delivery and similar microenvironment.

This article is protected by copyright. All rights reserved


 

 

JOURNAL OF MEDICAL VIROLOGY

 [IF=20.693]


文獻(xiàn)引用抗體:

bs-1264RAnti-RSV G pAb

bs-6670RAnti-IGF2R/M6PR pAb

bs-0227RAnti-IGF1R pAb

作者單位:中南大學(xué)湘雅醫(yī)學(xué)院醫(yī)學(xué)微生物學(xué)系

摘要:Respiratory syncytial virus (RSV) is one of the main pathogens of viral pneumonia and bronchiolitis in infants and young children and life-threatening diseases among infants and young children. GTPases of the immune-associated protein family (GIMAP) are new family members of immune-associated GTPases. In recent years, much attention has been paid to the function of the GIMAP family in coping with infection and stress. Gimap5 is a member of the GIMAP family, which may be correlated with anti-infectious immunity. RT-qPCR, Western blot, and indirect immunofluorescence (IFA) were used to detect the expression of Gimap5, M6PR and IGF1R(the major RSV receptor). Transmission electron microscopy (TEM) was used to detect the degradation of RSV in Gimap5-overexpressed or -silent cell lines. Computer virtual screening was used to screen small molecule compounds targeting Gimap5 and the anti-RSV effects were explored through in vivo and in vitro experiments. GIMAP5 and M6PR were significantly downregulated after RSV infection. Gimap5 accelerated RSV degradation in lysosomes by interacting with M6PR, and further prevented RSV invasion by downregulating the expression of RSV surface receptor IGF1R. Three small molecule compounds targeting Gimap5 were confirmed to be the agonists of Gimap5. The three compounds effectively inhibited RSV infection and RSV-induced complications. Gimap5 promotes the degradation of RSV and its receptor through interacting with M6PR. Gimap5 agonists can effectively reduce RSV infection and RSV-induced complication in vivo and in vitro, which provides a new choice for the treatment of RSV.

 

ACS Nano [IF=18.027]


文獻(xiàn)引用抗體:bs-4947R

Anti-IL-1 Alpha pAb

作者單位:湖南長(zhǎng)沙中南大學(xué)湘雅醫(yī)院眼科中心

摘要:Glaucoma is the leading cause of irreversible blindness worldwide, characterized by progressive vision loss due to the selective damage to retinal ganglion cells (RGCs) and their axons. Oxidative stress is generally believed as one key factor of RGCs death. Recently, necroptosis was identified to play a key role in glaucomatous injury. Therefore, depletion of reactive oxygen species (ROS) and inhibition of necroptosis in RGCs has become one of treatment strategies for glaucoma. However, existing drugs without efficient drug enter into the retina and have controlled release due to a short drug retention. Herein, we designed a glaucomatous microenvironment-responsive drug carrier polymer, which is characterized by the presence of thioketal bonds and 1,4-dithiane unit in the main chain for depleting ROS as well as the pendant cholesterols for targeting cell membranes. This polymer was adopted to encapsulate an inhibitor of necroptosis, necrostatin-1, into nanoparticles (designated as NP1). NP1 with superior biosafety could scavenge ROS in RGCs both in vitro and in vivo of an acute pathological glaucomatous injury model. Further, NP1 was found to effectively inhibit the upregulation of the necroptosis pathway, reducing the death of RGCs. The findings in this study exemplified the use of nanomaterials as potential strategies to treat glaucoma.


 

ACS Nano [IF=18.027]


文獻(xiàn)引用抗體:

bs-0061RAnti-beta-Actin (Loading Control) pAb

bs-5913RAnti-Calreticulin pAb

bs-0295G-HRPGoat Anti-Rabbit IgG H&L / HRP

作者單位:韓國(guó)成均館大學(xué)藥學(xué)院

摘要:As an emerging anticancer strategy, ferroptosis has recently been developed in combination with current therapeutic modalities to overcome the existing limitations of conventional therapies. Herein, an ultraviolet (UV) upconversion luminescence-fueled nanoreactor is explored to combine ferroptosis and apoptosis through the UV-catalyzed Fenton reaction of an iron supplement (ferric ammonium citrate) loaded in a mesoporous silica layer in addition to the support of a chemotherapeutic agent (cisplatin) attached on the functionalized silica surface for the treatment of triple negative breast cancer (TNBC). The nanoplatform can circumvent the low penetration depth typical of UV light by upconverting near-infrared irradiation and emitting UV photons that convert Fe3+ to Fe2+ to boost the generation of hydroxyl radicals (·OH), causing devastating lipid peroxidation. Apart from DNA damage-induced apoptosis, cisplatin can also catalyze Fenton-based therapy by its abundant production of hydrogen peroxide (H2O2). As a bioinspired lipid membrane, the folate receptor-targeted liposome as the coating layer offers high biocompatibility and colloidal stability for the upconversion nanoparticles, in addition to prevention of the premature release of encapsulated hydrophilic compounds, before driving the nanoformulation to the target tumor site. As a result, superior antitumor efficacy has been observed in a 4T1 tumor-bearing mouse model with negligible side effects, suggesting that such a nanoformulation could play a pivotal role in effective apoptosis-strengthened ferroptosis TNBC therapy.

※ 點(diǎn)擊這里查看往期單月Bioss抗體產(chǎn)品文獻(xiàn)引用列表

 

主站蜘蛛池模板: 97久久精品人人做人人爽 | 国产中文区4幕区2022 | 一本色道久久综合无码人妻 | 小12萝裸体自慰出白浆 | 欧美大片视频免费看 | 激情午夜av| 99精品日本二区留学生 | 精品亚洲一区二区三区在线播放 | 后入到高潮免费观看 | 国产一卡2卡3卡四卡精品国色无边 | 欧美顶级少妇做爰hd | 精品无码av不卡一区二区三区 | 黄色福利视频 | 蜜芽tv福利在线视频 | 日本高清视频一区二区三区 | 成人动漫中文字幕 | 久久久久国色av免费观看性色 | 国产乱码免费卡1卡二卡3卡四卡 | 国产亚洲精品久久久ai换脸 | 久久国产乱子伦精品免费午夜 | 欧美日韩另类一区 | 日韩欧美精品免费 | 五月激情四射网 | 色综合久久久网 | 成人午夜免费无码福利片 | 97视频在线观看免费 | 在线成人免费观看 | 久久中文字幕影院 | 亚洲精品影院在线观看 | 色香视频在线观看 | 一道精品一区二区三区 | 亚洲精品无码成人网站 | 劲爆欧美第一页 | 午夜在线视频观看日韩17c | 午夜xxxxx| 久久精品亚洲男人的天堂 | 综合久久婷婷综合久久 | 国产精品久久久久免费a∨大胸 | 毛片网免费 | 亚洲三级网站 | 天天爽天天爽夜夜爽 | 欧美有码在线观看 | 国产成人av在线桃花岛 | 男人添女人下部免费视频播放 | 久久精品视频在线观看免费 | 国产 中文 制服丝袜 另类 | 范冰冰特黄xx大片 | 无码熟妇人妻av影片在线 | 中文字幕一卡二卡三卡 | 国产精品人成在线观看 | 国产午夜精品理论片a级大结局 | 日本熟妇色一本在线视频 | 永久免费黄色 | 黄色一区视频 | 久久久久亚洲精品无码网址色欲 | 国产精品无码久久综合网 | 中文字幕相泽南女教师 | 国产亚洲精品av | 午夜黄视频 | 欧美日韩久久精品 | 中文字幕55页| 91视频免费入口 | 小辣椒av福利在线网站 | 人与鲁性猛交xxxx | 中文字幕高清在线免费播放 | 精品一区二区三区蜜桃臀软件 | 在线国产激情视频 | 三级成年网站在线观看 | 久久精品第九区免费观看 | 五月综合色婷婷在线观看 | 亚州av网站大全 | 日韩一区二区在线视频 | 欧美成 人版在线观看 | 能直接看的黄色网址 | 狠狠色狠狠色综合日日不卡 | 青青草免费在线视频观看 | 久久久久99一区二区三区 | 亚洲精品一区二区三区在线观看 | 国产在线不卡一区 | 久操免费观看 | 三区av | 韩国一级淫一片免费放 | 精品一区二区在线观看视频 | 色综合久久婷婷 | 99精品一级欧美片免费播放 | 一区二区三区在线视频观看 | 久久人妻天天av | 888久久久| 私人成片免费观看 | 女色婷婷 | 亚洲高清自有吗中文字 | 狠狠爱网站 | 老太婆av| 激情小说另类图片 | www.黄色片网站 | 葵司在线观看 | 国产真人真事毛片视频 | 午夜肉伦| 久久久久国产精品熟女影院 |